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Long-range interactions in sequences of human behavior
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Measures derived from the thermodynamic formalism for dynamical systems are applied to human behavior
to determine the degree of interaction within sequences of choices. Sequences of 500 binary choices generated
by 22 human subjects are analyzed using autocorrelation and mutual information functions, as well as the
fluctuation spectrum of local dynamical entropies or local spatial scaling exponents. The main results are as
follows: (1) choices generated by the subjects are interdependent on short, midrange, and large scales relative
to the 500 choices generated in the paradig®;human behavior is characterized by large fluctuations of
dynamical and geometrical choice characteristics;(@hthese geometric and dynamical characteristics can be
related to a few competing principld$$1063-651X%97)01203-§

PACS numbd(s): 87.10+e

The observation that complex temporal patterns can benents provides measures to calculate macroscopic quantities
generated by simple underlying systefis?] has drawn in-  of the system in analogy to the spin-spin interactions in sta-
creasing interest to determine whether biological time seriefistical mechanics.
are generated by nonlinear dynamical systems. Further ex- Several investigators have attempted to quantify the de-
ploration of dynamical systems has shown that low-gree of interdependence found in sequences generated by
dimensional, chaotic dynamics is only one type of complexbiological system$12—-14. In particular, long-range corre-
system’s behaviof3-5]. In particular, spatially extended lations have been described in a variety of systems ranging
systems can generate time series that exhibit exponential dirom eukaryote or prokaryote DNAL3,15 to human heart-
vergence of initially nearby observations, characteristic fotbeat intervald16]. Four different methods have been sug-
chaotic dynamical systems, but also exhibit time series thagested for the analysis of sequential data. First, gheer

show a logarithmic divergence of nearby conditigd$ Fi-  spectrumand/orautocorrelationanalysis attempts to deter-
nally, “apparently stochastic” behavior can be generated bymine the degree of linear relationship among elements of the
deterministic, spatially extended systef$. biological sequence separatedlbglements. Second, calcu-

Ergodic theory has been used to describe both “stochadating a distance metric between observations separatéd by
tic” and deterministic systems and relies on topological andelements uses the concept ofractal dimension[17,1§ to
probabilistic invariant measures to characterize dynamicajuantify the correlation in a sequence. Thikaiimogorovor
systems[7]. Both deterministic and stochastic systems carmetric entropymeasure$19] can be computed based on the
generate time series with indistinguishable topological andlivergence rate of similar sequences. In this case, the aver-
metric dynamical characteristi€g]. However, several inves- age branching rate or number of distinct observations
tigators have recognized that a single measure does not agkeighed by the probability of their occurrence yields an es-
equately describe the complexity of the underlying dynamitimate of the metric entropy as defined in the context of
cal systeni{8-10]. For example, the average uncertainty of adynamical systemg20]. Finally, themutual informationcan
new observation does not capture information about subsdye computed from the joint probabilities of individual obser-
quences that may be highly predictable or highly unpredictvations separated by elementq13]. In particular, the latter
able. Moreover, similar average invariant measures can bgvo methods not only quantify linear interactions, but also
generated by completely different distributions. Thus, in or-assess higher-order dependences.
der to assess the contributions of subsets of observations In many biological systems, individual observations are
with different dynamical properties the ergodic theory of dy-not organized on a particular temporal or spatial scale but
namical systems was embedded in a thermodynamic formashow measurable relationships across a range of these scales
ism [8]. [14,16,2]1. Here the interdependence between elements of

Here the thermodynamic formalism for dynamical sys-human behavior, presumably the most complex biological
tems is used to quantify the degree of interaction in sesystem, was assessed using a simple experimental setup to
guences of human behavior to determine whether compleaddress the following questions. First, the nature and extent
patterns of behavior are generated by simple underlying sy®f the interactions between individual behavioral elements
tems. Individual behavioral elements or subsequences of olwas determined using the methods described above. Based
servations are considered analogous to individual particle asn the theoretical results from complex interacting systems,
spin configurations within a macroscopic systgit]. Quan-  both logarithmic and exponential decays of information were
tifying the interactions between individual behavioral ele-hypothesized to coexist. To determine the nature of the in-

terdependences on different scales, four different methods
were used, i.e., autocorrelation functions, mutual informa-
*Fax: (619-543-2493. Electronic address: martin@rat.ucsd.edu tion, spatial scaling exponents, and dynamical entropy analy-
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sis. Second, the degree of fluctuation was examined to deteobservations. Following the derivation of Herzel and Grosse
mine whether average measures sufficiently describe thel3], given the probability of observing an individual ele-
interaction between individual behavioral elements. Basednenti or elementj, p; andp;, respectively, as well as the
on the statistics of multiplicative processes, it was hypothjoint probability of element andj separated bk observa-
esized that the degree of interdependence between hum&@ns, pij(k), the mutual information is defined via
behavioral element fluctuates significantly. The fluctuation M
spectrum of local dynamical entropies and local spatial scal- (k) = z b; -(k)In( pi,i(k))
ing exponents was computed to address this question. i pipj |

The organization of human behavioral sequences is as-
sumed to be analogous to the generation of patterns observafie€ mutual information, when expressed inJpguantifies
in coordinated hand movemer&2]. In both cases, macro- the average l_)lts of information cor_ltained in one observation
scopic variables are used to assess the self-organized statelgt Will specify the other observation. In analogy, assigning
the subject presumably due to the organization of responsdgal numberda; , i=1,... M} to the partitioned elements in-
on different levels in the central nervous system. MoreoverPhase space and assuming ergodicity, the autocorrelation
as behavioral elements are organized many possible comiyinction is defined by

nations of elements are eliminated. This phenomenon is M
ubiquitous in complex systems and has been described by the C.(K)= (K —pDplaa
Slaving principle[23] center manifold theorer24], or adia- a(k) i,12:1 LPij (k)= pipy Jaiay

batic elimination[10].

The application of ergodic theory and the thermodynamid=or binary sequences, both functions yield similar informa-
formalism to biological data is associated with a complex setion and have been used to determine long range correlations
of problems due to the statistical properties of these data seketween individual experimental observations as detailed in
[25]. Specifically, time scales are frequently not separable in13].
biological data leading to nonstationary distributions. More- The autocorrelation and mutual information functions
over, statistical error measures of short sequences are typguantify the statistical dependence of sets of symbols; how-
cally large and numerical estimates are typically biased duever, they do not assess the deviation of the statistical depen-
to the poor converging properties of multiplicative processesdence for individual symbol sequences. Following the devel-
It has been proposed that the measures obtained should bgment of the bilinear form for both the autocorrelation
tested against the least complex alternative generator providunction and the mutual information as showrn 18], a ma-
ing the null hypothesis. Randomized data sets are used to tésix D (k) with entriesD; (k) = p;; (k) —p;p; can be used to
the null hypothesis that sequences result from an identicallgxpress both the autocorrelation function
distributed random process. Therefore, to assess the sequen-

tial properties of human behavior the estimated dynamical Ca(k)=aD(k)ar

properties behavioral sequences are compared to randomized _ ) )

data throughout this investigation. and the mutual information by a Taylor expansion
It is reported here that human behavioral elements interact M

differentially on small and relatively large scales. While (k)=
small-scale interactions appear to be determined primarily by
exponential decay, the relatively-large-scale decay is charac-
terized by logarithmic or even no noticeable decay of infor-In both cases, the sum for each row and each column of
mation. Thus both logarithmic and exponential decay of in-D(k) has to vanish. However, the deviationdf;(k) is not
formation occur and may result from the large fluctuation ofconsidered. Therefore, individual sequences may differ sig-
local information decay indices. Therefore, it appears thatificantly from the stochastic independence, while the sys-
multiple processes determine the organization of humatem as a whole may still behave as an independent system.
choice behavior. Therefore, a large-fluctuation statistical approach may pro-
For the analysis of interdependences between human bgide additional information about the statistical mechanics
havioral elements, consider a choisg from m different  governing the individual interdependences between sequence
choice alternatives an; - - - s} in case of the binary choice elements.
task m=2. The experimental trial generatifg choices is The average dynamical entropyquantifies the average
represented vigs}". For the thermodynamic formulation, degree of association between choices within the entire se-
consider subsequences of choices of lerigdiiarting at the quence of experimental observations. The assessment of the
jth choice{s}}. Within the thermodynamic formalism, mac- fluctuations of dynamical entropies provides important infor-
roscopic quantities are derived to describe the behavior afnation about the rule that generates the sequence and are
the system based o{r&;}}. In the case of choice behavior, a assessed within the framework of the large-fluctuation statis-
local interdependence measures its frequency, and the lengties [9] based on the interdependence between elements in
of the subsequences considered corresponds to thermodsubsequences of the observations. Specifically, local dynami-
namic conceptualizations of energy, entropy, and volumegal entropies are defined for the subsequences based on the
respectively. subsequence occurrence probability;)( and the subse-
The autocorrelation functio@(k) and the mutual infor- quence lengthl(), h,=—In(p;)/I;. This measure is analo-
mation I (k) have been used to assess the interdependeng®us to a “local spread of information” or the rate at which
between individual elements in a sequence of experimenta particular subsequence becomes unique. A technique

D; (k)2
21n2 ile Pip; +0(D; j(k)3).
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analogous to nearest-neighbor methods has been suggesteonsequently, rearranging the above sum over all observa-
to calculate efficiently the average dynamical entropy, butions to a sum over all local entropies within the rageh,

can be easily extended to calculate these local dynamicaives

entropies[26]. This method determines the uniqueness of a

subsequence and calculates the local dynamical entropy via hmax
1= >, Nb(h)edh-I7@,
In(N h=hmin
ho (N)

oL Inserting the assumed distribution yields

whereN corresponds to the length of the entire sequence and

hmax
[; is the length of the subsequences that identifies the subse- 1= 3 e ll-Sh-an+ra)
guence as unigue. The development of the thermodynamic hShe '

formalism for the dynamical entropiek; based on this
method is derived from the definition of the mass exponentn this summation the individual terms will contribute most
via significantly if the term within square brackets approaches
zero given the varying| parameter; thus
N eqlihi
1= g min[ — S(h) —gh-+ 7(q)]
q

Typically, the mass exponent is considered a function.of implies
However, in this case, rearranging the above summation

given the definition oh; yields
S(h)=(q)—qh,

which corresponds to a Legendre transform in from variable
set(q,7(q)) to (h,S(h)).

The preceding was based on the assumption of an expo-
thus givingq as an explicit function of(q), nential spread of information. In contrast, here the investiga-
tion of the choice sequences is set up on a logarithmic scale.
To analyze the sequences of choices, the data were trans-

N
formed as
In e_liT(Q))

LTIV S _[+1 if the ith choice=R
S()=1_1 if the ith choice=L.

N
1=ed NS glir(@)
i=1

Subsequently, taking the inverse of the partial derivative of
g(7) to derive an explicit expression fdn(q) yields Subsequently, a walk transformation function was con-
structed for theath choice as

el [
-t W(i) =2, (-
. i<
|ie_|iT(Q)
i=1 This transformation is analogous to the path observed for a
one-dimensional random walkg27]. It is well established

Specifically, ar weighted average of the unique subsequencehat a random walker generates a self-similar trajectory and
lengths provide the estimation of tiedependent entropies  diffuses liket", h=3, corresponding to a fractal dimension of

M =

aaiar ")

Z

via 2—h=1.5. Moreover, anamolous diffusion has been defined
via exponentsh>3 or h<3 describing anomolously fast or
In(N) slow diffusion, respectively. In the case of the binary choice
h(q)= B task, anamolous fast diffusion corresponds to sequences of
- similar choices, i.e., simple repetitions of one or the other

choice alternative. In contrast, anomolous slow diffusion is
Characterized by alternating choice sequences, i.e., anticorre-
ed adjacent steps. Finally, the autocorrelation function is
scribed by & function for h=3, but retains residual cor-
relations forh=31. Anomolous diffusion is thus characterized
by the interdependences on all levels of resolution.

Here the distancé between positions ofV that arek
steps apart is assumed to scale&sExtending the method
Nb(h;)=e'iSh), described i 16] in order to assess the fluctuationshofor

where(l) . stands for the ensemble average weighted by th
mass exponent. The summation over all subsequences
given above can also be used to derive the expression for tfbee
fluctuation spectrum of local dynamical entroptg@h)[36].
The number of local entropidsg, Nb(h;), is assumed to be
described by
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different subsequences of th¥ starting at thath choice, a This summation will give appreciable contributions for vari-

local spatial scaling exponedt=2—h was defined by ousq values only if the difference betweayd and f(d) is
minimal. Thus the mass exponertt]) can be used to obtain
L (i k)~ k24D the f(d) value using

. o , , f(d)~qd—(q).
The exponend(i) quantifies the geometric properties of a
walk segment. Specifically, a high exponent indicates thafor the explicit calculation of (d), the g-dependent spatial
the distance does not increase significantly with an increasexponentd(q) that minimizes the difference above is given
ing number of steps, corresponding to anomolously slow difpy
fusion or an anticorrelated behavioral sequence. On the con-

. ™ . . N
trary, a low exponent signifies a large increase of distance

upon increasing the number of consecutive steps or fast dif- o In[#(q)] 1 i:ZO L(i,k)97 4 In[L(i,k)]
fusion via a correlated behavioral sequence. d(g)= = o

To quantify the contribution of the occurrence of a par- aq In(k) S L(i ket
ticular local scaling exponertd(i) to the ensemble average = (1K)

of all subsequences for the walk transformation, it has been
proposed that the probability densipgd) of finding a seg- The evaluation of these summations for variays/alues
ment on scald that exhibits a particular local spatial scaling yields g-dependent averages of distances that correspond to

exponentd can be described via different local scaling exponents. Specifically, &pro0 only
long distances will contribute significantly to this summa-
p(d)~k~ld=f@] tion, thus evaluating diffusing, correlated sequences corre-

sponding to low local scaling exponents. In contrast, for
That is, the frequency of occurrence depends on the scalp——o, only short distances will contribute to the evalua-
and a function that explicitly depends only on the local spation, yielding slowly diffusing, anticorrelated sequences cor-
tial scaling exponent, i.ef(d). In the special case where responding to high local scaling exponents. Using least-
f(d)=d, we obtain the probability density to be 1 and non-squares fits to obtain the scale-independent functions, this
vanishing. Thisd value characterizes the overall geometric method also provides error estimates of all quantities.
scaling property of the entire walk transformation. This scal- For the experiment, human subjects sat in front of a com-
ing function has been calledspectrum of singularitief28]  puter equipped with a mouse. Instructions were shown on the
or aspectrum of local scaling exponerl]. computer screen and additional questions regarding the ex-
Analogous to the fluctuation spectrum of local dynamicalperiment were answered by the experimenter. The computer
entropies, the spectrum of local spatial scaling exponents castreen displayed a house in the center flanked on either side
be estimated using a canonical approach. Specifically, an uwith a sidewalk and a ditch. Across the ditches were two
determined multiplieq, is introduced and generates a maxi- roads. The following scenario was described. In the house
mum likelihood estimation of the probability density for the are several people waiting to catch a ride with a car that is
different levels or resolution. The mass exponefd), de-  driving on the road on the left- or the right-hand side. Only
fined via two people can wait at a time, one on each side, but neither
can cross the ditch between the sidewalk and the road. The
k7@~ L (i k)9t subject’s task was to push the left or the right button in order
= (k)" to build a temporary bridge for one of the people, who may
then cross the ditch to reach the car. The experimenter indi-
consists of a-weighted summation over all local lengths of cated that the car could arrive on either side without a par-

path segments. Rearranging the summation to sum over étj)pular preference or order in appearance. A tria_ll was defi_ned
different local distancek with sampling widthdL, i.e., y the response of the subject to the situation described
above. The paradigm consisted of 500 presentations of the
situation, i.e., 500 trials. Each trial was initiated without de-
k=@~ p(L(i,k))SLL(i, k)97, lay by the button push of the previous response. Initially, two
L schematic figures appeared on the screen until the subject
responds. Thereafter, the car was shown briefly on the com-
puter screen for 250 msec on the far right- or left-hand side
as determined by a random number generator. At the end of
the paradigm, the computer screen was cleared and the sub-
k*ﬂq)%E p(L(i,k))SLk™ (@ Ddm, ject was informed that the procedure had been completed.
L Twenty-two subjects were recruited from an undergradu-
i . ate course at San Diego State University screened for psy-
Introducing thef (d) function, one may replace the summa- chological abnormalities and were asked to participate in a
tion over the different lengths by a summation over the variqarger research project of which the choice task experiment

N—k

using the scaling assumptiar{i, k), and eliminating prefac-
tors yields

ous local scaling exponents and their densities was a small component. The mean age of the subjects was
27.4+2.8 yr and included both males and females.
k—T(q>~2 K Ld=f(d)]—(a-1)d The autocorrelation function was calculated for each sub-
d ject for 0<k=32 and the autocorrelation functions were av-
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FIG. 1. (a) Average correlation functiof©(k) and(b) average mutual information functidrifk) obtained by averaging the individual
functions across all subjects. These functions are fitted logarithmifaliyparameters see Tablg dnd are shown irib) and (d), respec-
tively. The line in(b) and(d) reflects the fitted function fo€(k) andl(k), respectively.

eraged across the 22 subjects to obtain the group autocorredth y=2.76. However, the regression coefficients exhibit
lation function [Fig. 1(a)]. The correlation between large standard errors, indicating a poor(fiable ).

successive choices decays rapidly and approaches zero for aSimilar to the autocorrelation function, the mutual infor-
lag of 5. The doubly logarithmic fit of the autocorrelation mation function was computed for each subject fetkG<32
function[Fig. 1(b)] indicates a power-law decay(k)~t~?, and the individual functions were averaged across all sub-

TABLE I. Parameters for the least-squares fit of the f@&k® for the autocorrelation functioB(k) and the mutual information function
(k). Two distinct regimes for (k) were observedk<12 andk=12) and fitted separately. Listed are the parametemnstant and
exponen), the standard errofSE), the T statistic, the tail probabilityp valug), and the explained variancé.

Logarithmic fit for autocorrelation and mutual information

Parameters A SE T statistic p value B SE T statistic p value r2
C(k) -1.61 2.06 —-0.78 0.47 —2.76 1.14 -241 0.073 0.59
I(k), k<12 —4.27 0.21 —20.04 0.00 -1.35 0.08 —15.89 0.00 0.97

1(k), k=12 —8.04 0.82 -9.71 0.00 —0.05 0.18 —0.27 0.79 0.00
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jects to yield the group mutual information functi¢Rig. 2
1(c)]. The values of the group function are compared with @
the systematic overestimation according to Herzel and 1 75
Grosse[13], given by 1J2500-k In(2)], graphed in Fig.

1(d). The mutual information function exhibits a power-law 1.5
decayl (k)~t~7, with y=1.348. In this case, the fitted pa-

rameters are highly significant with small standard errors 1.25
(Table ). Thus, compared to the autocorrelation function, the 4
mutual information provides a more statistically robust mea-  gq4) 1
sure of the information decay. Interestingly, the mutual in-
formation function exhibits a different behavior f&e=12. 0.75
For these delays, the mutual information does not decay sig-
nificantly as indicated by the fitting functio(Table |). In 0.5
addition, the group mutual information function exhibits @ Control Subjects
consistently higher values than those obtained from the ran- .5
domized data setdight gray point$ and those predicted by © Randomized Data
the systematic overestimatigline). In summary, the mutual
information function for the subjects indicates two separate 1.2 ey e 1.8 2
regimes: first, a significant decay of mutual information for
consecutive choices with small lagls<12), and second, a

small but significant interdependence between choices that 8
are separated by a larger ldg>12). Therefore, even choices (b)
that are separated by many choices in between are not com- &
pletely statistically independent.

The group fluctuation spectrum of local spatial scaling 4
exponentsf(d) was obtained by averaging the fluctuation
spectra of each subject. The scales considered varied from 9
k=1 to 100 averaged over an ensemble size=sfl50 con-
secutive choices. Each function was evaluated at a range of

predeterminedy values and averages for bothand f(d) f(d o

were obtained. Figure(d) showsf(d) for 22 subjectgblack

pointy and for the randomized data sétgay point$. The -2

units on both axes correspond t¢(length]/In[(scalg]. The

t-score difference function is shown in Fig(b2 First, the -4

average spatial scaling exponeht d(1) does not differ sig-

nificantly between subjectsl=1.4740+-0.0262 and the ran- -6

domized data seted=1.4690+0.0311. Consequently, the

average scaling behavior of choice sequences does not devi- _g . . .

ate from a random walk within the investigated region of 1.2 1.4 4 L6 1.8 2

scaling. Second, subjects exhibit a significantly increased

contribution of highly anticorrelated choice sequence with

high local spatial scaling exponerds-1.66 as indicated by _ e

f.(d)<—2.0. Third, there is a slight and marginally signifi- ©Ponentsf(d) and (b) t-score differences between original and

cant increase of highly correlated choice sequences witfindomized daté,(d). The gray area indicates insignificant differ-

d<1.3 with f,(d)<—2.0. To summarize, subjects’ choice ences between tht_a orlglr_1aI data and the randomized data set for
. different local spatial scaling exponents.

sequences are characterized, on the average, by a random-

walk pattern, but exhibit significant deviations of both highly

correlated and anticorrelated choice subsequences. —

Similar to the f(d) function, the group fluctuation (hye=0.8610-0.006). Second, the randomized data set
spectrum of local dynamical entropi€éh) was obtained by is characterized by a lower topological entropy with a
g-dependent averaging of the fluctuation spectra for the intarger__ contribution of the topological entropy
dividual subjects. Figure(@ shows thes(h) for all subjects  [(h,,,S(h))=1.0210-0.0029, 0.94780.0019 as indicated
(black point$ and for all randomized data setgray points. by the higher maximum of the group fluctuation spectrum
The units on both axes correspond(hits)/(step. To statis- compared to the subject’s maximum of the fluctuation spec-
tically evaluate the difference between these two functionfrum. _ [(h,,S(h))=1.067G£0.0147,  0.930£:0.0031.
thet-score difference between the averaged fluctuation spedhird, S(h) for the subjects exhibits a significantly increased
tra is shown in Fig. @). Similar to the S(h) functions contribution of highly predictable subsequences and highly
shown for the individual subject, the group functions revealunpredictable subsequences as indicated byt-#eore dif-
three distinct characteristics. First, the average or metric erference function. This function shows that the randomized
tropy for the subject$h,,=0.7800-0.0178 is significantly ~ data sets contain significantly fewer Iagw<0.75 and high
lower than h, for the randomized data sets (h>1.2) dynamical entropy subsequences. To summarize,

FIG. 2. (a) Average fluctuation spectrum of local spatial scaling



55 LONG-RANGE INTERACTIONS IN SEQUENCES P. .. 3255

1 vironmental or intrapsychic demands and observable actions
[bits/step] [ o, (@ of human beings. Various aspects of choice behavior have
been extensively discussed in the psychological literature
[29-34. The results of these investigations suggest that de-

08 cision making in the presence of uncertainty involves com-
plex central processes that are sensitively influenced by a
variety of experimental factors.

0.6 Here the mutual information function indicates that the

S(h) interdependence between choices decays significantly within
the adjacent ten choices. This would suggest that the average

0.4 interdependence is best captured in statistical-mechanical

models that incorporate explicitly these scales. However, the
interdependence between choices that are separated by more
0.2 § @ Control Subjects than ten choices does not vanish. Instead, there is a signifi-
cant long-range dependence between choices. The detailed
assessment of the long-range behavior using the fluctuation
0 spectrum of local spatial scaling exponents indicates that the
0.25 0.5 0.75 1 1.25 1.5 1.75 2 subjects generate significantly more anticorrelated or alter-
h [bits/step] nating choice sequences than would be expected by chance.
8 This finding had been anecdotally described previously for
®) short sequencegs5]. This investigation extends these find-
6 ings for long sequences. Put simply, human subjects exhibit
a “balance” between choice alternatives that extend across

4 long ranges of choice sequences.
However, the subjects also generated an increased contri-

bution of correlated or simple repetitive sequences when

@ Randomized Data

: ‘ compared to the randomized data set. These findings had
o been described previously within the context of induction of
L L sequence repetitiof29]. Therefore, it appears that human
\ . choice sequences result from the balance of two competing

principles, i.e., balancing choice alternatives and generating
simple repetitive choice sequences. The competition between

these two principles results in an increased variability of
choice subsequences. This variability also extends to the dy-
namic description of the choice sequences. Specifically, both
highly predictable and highly unpredictable choice subse-
0.25 0.5 0.75 1 1.25 1% 1.95 2 quences contribute significantly more frequently to the aver-
h age interdependence between choices than expected by
chance. Within the entropic realm, there appears to be a com-

FIG. 3. (@) Average fluctuation spectrum of local dynamical PEtition between two dynamic principles: first, to generate
entropiesS(h) and (b) t-score differences between original and NOVvel, unpredictable behavioral sequences, and second, to
randomized dat&,(h). The gray area indicates insignificant differ- repetitively use a familiar set of choice sequences. Thus the
ences between the original data and the randomized data set fiicreased range of local dynamical entropies may result from
different local dynamical entropies. the competition between uncertainty or novelty and familiar-

ity or establishment of a characteristic set of rules generating
the choice sequences.
the group fluctuation spectrum of local dynamical entropies In summary, the application of the fluctuation spectrum
reveals a greater nonuniformity for the subjects relative taanalysis to a simple behavioral paradigm is able to extract a
the randomized data sets. few guiding principles for the generation of choice se-

There are three main results of this investigation. Firstquences. These principles can be used in a statistical-
average measures of interdependence on a short @zale  mechanical model to determine explicitly the influence of
<10) and a midrange scal<k<22) indicate that subse- these principles on choice behaviors in analogy to the deter-
quent choices in a simple binary choice task are not randommination of order parameters in coordinated hand move-
Second, the subject’s choice sequences are characterized imgnts[22,23. Moreover, the mutual information function
an increased variability in interdependence compared to thean be used to determine the scale of a model for the ob-
randomized data sets on all scales. Third, there are two scaltsined data sets based on the average interdependence. These
(k<12 andk>12) with different characteristics of average findings further support the notion that complex behavior
information decay. ranging from a molecular biological lev¢lL3,14,14 to a

Conceptually, human choice behavior is located at thesocioeconomic levdl36] is based on long-range interactions
interface between external or internal constraints due to erbetween individual elements.
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