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Long-range interactions in sequences of human behavior
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Measures derived from the thermodynamic formalism for dynamical systems are applied to human behavior
to determine the degree of interaction within sequences of choices. Sequences of 500 binary choices generated
by 22 human subjects are analyzed using autocorrelation and mutual information functions, as well as the
fluctuation spectrum of local dynamical entropies or local spatial scaling exponents. The main results are as
follows: ~1! choices generated by the subjects are interdependent on short, midrange, and large scales relative
to the 500 choices generated in the paradigm;~2! human behavior is characterized by large fluctuations of
dynamical and geometrical choice characteristics; and~3! these geometric and dynamical characteristics can be
related to a few competing principles.@S1063-651X~97!01203-8#
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The observation that complex temporal patterns can
generated by simple underlying systems@1,2# has drawn in-
creasing interest to determine whether biological time se
are generated by nonlinear dynamical systems. Further
ploration of dynamical systems has shown that lo
dimensional, chaotic dynamics is only one type of comp
system’s behavior@3–5#. In particular, spatially extende
systems can generate time series that exhibit exponentia
vergence of initially nearby observations, characteristic
chaotic dynamical systems, but also exhibit time series
show a logarithmic divergence of nearby conditions@4#. Fi-
nally, ‘‘apparently stochastic’’ behavior can be generated
deterministic, spatially extended systems@6#.

Ergodic theory has been used to describe both ‘‘stoch
tic’’ and deterministic systems and relies on topological a
probabilistic invariant measures to characterize dynam
systems@7#. Both deterministic and stochastic systems c
generate time series with indistinguishable topological a
metric dynamical characteristics@7#. However, several inves
tigators have recognized that a single measure does no
equately describe the complexity of the underlying dyna
cal system@8–10#. For example, the average uncertainty o
new observation does not capture information about su
quences that may be highly predictable or highly unpred
able. Moreover, similar average invariant measures can
generated by completely different distributions. Thus, in
der to assess the contributions of subsets of observa
with different dynamical properties the ergodic theory of d
namical systems was embedded in a thermodynamic form
ism @8#.

Here the thermodynamic formalism for dynamical sy
tems is used to quantify the degree of interaction in
quences of human behavior to determine whether com
patterns of behavior are generated by simple underlying
tems. Individual behavioral elements or subsequences of
servations are considered analogous to individual particl
spin configurations within a macroscopic system@11#. Quan-
tifying the interactions between individual behavioral e
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ments provides measures to calculate macroscopic quan
of the system in analogy to the spin-spin interactions in s
tistical mechanics.

Several investigators have attempted to quantify the
gree of interdependence found in sequences generate
biological systems@12–16#. In particular, long-range corre
lations have been described in a variety of systems rang
from eukaryote or prokaryote DNA@13,15# to human heart-
beat intervals@16#. Four different methods have been su
gested for the analysis of sequential data. First, thepower
spectrumand/orautocorrelationanalysis attempts to deter
mine the degree of linear relationship among elements of
biological sequence separated byk elements. Second, calcu
lating a distance metric between observations separatedk
elements uses the concept of afractal dimension@17,18# to
quantify the correlation in a sequence. Third,Kolmogorovor
metric entropymeasures@19# can be computed based on th
divergence rate of similar sequences. In this case, the a
age branching rate or number of distinct observatio
weighed by the probability of their occurrence yields an
timate of the metric entropy as defined in the context
dynamical systems@20#. Finally, themutual informationcan
be computed from the joint probabilities of individual obse
vations separated byk elements@13#. In particular, the latter
two methods not only quantify linear interactions, but al
assess higher-order dependences.

In many biological systems, individual observations a
not organized on a particular temporal or spatial scale
show measurable relationships across a range of these s
@14,16,21#. Here the interdependence between elements
human behavior, presumably the most complex biologi
system, was assessed using a simple experimental set
address the following questions. First, the nature and ex
of the interactions between individual behavioral eleme
was determined using the methods described above. B
on the theoretical results from complex interacting syste
both logarithmic and exponential decays of information we
hypothesized to coexist. To determine the nature of the
terdependences on different scales, four different meth
were used, i.e., autocorrelation functions, mutual inform
tion, spatial scaling exponents, and dynamical entropy an
3249 © 1997 The American Physical Society
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3250 55MARTIN P. PAULUS
sis. Second, the degree of fluctuation was examined to d
mine whether average measures sufficiently describe
interaction between individual behavioral elements. Ba
on the statistics of multiplicative processes, it was hypo
esized that the degree of interdependence between hu
behavioral element fluctuates significantly. The fluctuat
spectrum of local dynamical entropies and local spatial s
ing exponents was computed to address this question.

The organization of human behavioral sequences is
sumed to be analogous to the generation of patterns obse
in coordinated hand movements@22#. In both cases, macro
scopic variables are used to assess the self-organized st
the subject presumably due to the organization of respo
on different levels in the central nervous system. Moreov
as behavioral elements are organized many possible co
nations of elements are eliminated. This phenomenon
ubiquitous in complex systems and has been described b
Slaving principle@23# center manifold theorem@24#, or adia-
batic elimination@10#.

The application of ergodic theory and the thermodynam
formalism to biological data is associated with a complex
of problems due to the statistical properties of these data
@25#. Specifically, time scales are frequently not separable
biological data leading to nonstationary distributions. Mo
over, statistical error measures of short sequences are
cally large and numerical estimates are typically biased
to the poor converging properties of multiplicative process
It has been proposed that the measures obtained shou
tested against the least complex alternative generator pro
ing the null hypothesis. Randomized data sets are used to
the null hypothesis that sequences result from an identic
distributed random process. Therefore, to assess the seq
tial properties of human behavior the estimated dynam
properties behavioral sequences are compared to random
data throughout this investigation.

It is reported here that human behavioral elements inte
differentially on small and relatively large scales. Wh
small-scale interactions appear to be determined primarily
exponential decay, the relatively-large-scale decay is cha
terized by logarithmic or even no noticeable decay of inf
mation. Thus both logarithmic and exponential decay of
formation occur and may result from the large fluctuation
local information decay indices. Therefore, it appears t
multiple processes determine the organization of hum
choice behavior.

For the analysis of interdependences between human
havioral elements, consider a choicesi from m different
choice alternatives and$s1•••sm% in case of the binary choice
taskm52. The experimental trial generatingN choices is
represented via$s%N. For the thermodynamic formulation
consider subsequences of choices of lengthl starting at the
j th choice$s% j

l . Within the thermodynamic formalism, mac
roscopic quantities are derived to describe the behavio
the system based on$s% j

l . In the case of choice behavior,
local interdependence measures its frequency, and the le
of the subsequences considered corresponds to therm
namic conceptualizations of energy, entropy, and volum
respectively.

The autocorrelation functionC(k) and the mutual infor-
mation I (k) have been used to assess the interdepend
between individual elements in a sequence of experime
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observations. Following the derivation of Herzel and Gros
@13#, given the probability of observing an individual ele
ment i or elementj , pi andpj , respectively, as well as th
joint probability of elementi and j separated byk observa-
tions,pi j (k), the mutual information is defined via

I ~k!5 (
i , j51

M

pi , j~k!lnS pi , j~k!

pipj
D .

The mutual information, when expressed in log2, quantifies
the average bits of information contained in one observa
that will specify the other observation. In analogy, assign
real numbers$ai , i51,...,M % to the partitioned elements in
phase space and assuming ergodicity, the autocorrela
function is defined by

Ca~k!5 (
i , j51

M

@pi , j~k!2pipj #aiaj .

For binary sequences, both functions yield similar inform
tion and have been used to determine long range correlat
between individual experimental observations as detailed
@13#.

The autocorrelation and mutual information functio
quantify the statistical dependence of sets of symbols; h
ever, they do not assess the deviation of the statistical de
dence for individual symbol sequences. Following the dev
opment of the bilinear form for both the autocorrelatio
function and the mutual information as shown in@13#, a ma-
trix D̂(k) with entriesDi j (k)5pi j (k)2pipj can be used to
express both the autocorrelation function

Ca~k!5aD̂~k!aT

and the mutual information by a Taylor expansion

I ~k!5
1

2 ln2 (
i , j51

M
Di , j~k!2

pipj
1O„Di , j~k!3….

In both cases, the sum for each row and each column
D̂(k) has to vanish. However, the deviation ofDi j (k) is not
considered. Therefore, individual sequences may differ
nificantly from the stochastic independence, while the s
tem as a whole may still behave as an independent sys
Therefore, a large-fluctuation statistical approach may p
vide additional information about the statistical mechan
governing the individual interdependences between sequ
elements.

The average dynamical entropyh quantifies the average
degree of association between choices within the entire
quence of experimental observations. The assessment o
fluctuations of dynamical entropies provides important inf
mation about the rule that generates the sequence and
assessed within the framework of the large-fluctuation sta
tics @9# based on the interdependence between elemen
subsequences of the observations. Specifically, local dyna
cal entropies are defined for the subsequences based o
subsequence occurrence probability (pi) and the subse-
quence length (l i), hı52ln(pi)/ l i . This measure is analo
gous to a ‘‘local spread of information’’ or the rate at whic
a particular subsequence becomes unique. A techn
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55 3251LONG-RANGE INTERACTIONS IN SEQUENCES OF . . .
analogous to nearest-neighbor methods has been sugg
to calculate efficiently the average dynamical entropy,
can be easily extended to calculate these local dynam
entropies@26#. This method determines the uniqueness o
subsequence and calculates the local dynamical entropy

hi5
ln~N!

l i
,

whereN corresponds to the length of the entire sequence
l i is the length of the subsequences that identifies the su
quence as unique. The development of the thermodyna
formalism for the dynamical entropieshi based on this
method is derived from the definition of the mass expon
via

15(
i51

N
eqlihi

el it~q! .

Typically, the mass exponent is considered a function oq.
However, in this case, rearranging the above summa
given the definition ofhi yields

15eq ln~N!(
i51

N

e2 l it~q!,

thus givingq as an explicit function oft(q),

q5

lnS (
i51

N

e2 l it~q!D
ln~N!

.

Subsequently, taking the inverse of the partial derivative
q~t! to derive an explicit expression forh(q) yields

1

]q/]t
5 ln~N!

(
i51

N

e2 l it~q!

(
i51

N

l ie
2 l it~q!

.

Specifically, at weighted average of the unique subseque
lengths provide the estimation of theq-dependent entropie
via

h~q!5
ln~N!

^ l &t
,

where^ l &t stands for the ensemble average weighted by
mass exponent. The summation over all subsequence
given above can also be used to derive the expression fo
fluctuation spectrum of local dynamical entropiesS(h)@36#.
The number of local entropieshi , Nb(hi), is assumed to be
described by

Nb~hi !5el iS~hi !.
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Consequently, rearranging the above sum over all obse
tions to a sum over all local entropies within the rangeh, dh,
gives

15 (
h5hmin

hmax

Nb~h!eqlh2 l t~q!.

Inserting the assumed distribution yields

15 (
h5hmin

hmax

e2 l @2S~h!2qh1t~q!#.

In this summation the individual terms will contribute mo
significantly if the term within square brackets approach
zero given the varyingq parameter; thus

min
q

@2S~h!2qh1t~q!#

implies

S~h!5t~q!2qh,

which corresponds to a Legendre transform in from varia
set „q,t(q)… to „h,S(h)….

The preceding was based on the assumption of an e
nential spread of information. In contrast, here the investi
tion of the choice sequences is set up on a logarithmic sc
To analyze the sequences of choices, the data were tr
formed as

s~ i !5 H 11
21

if the i th choice5R
if the i th choice5L.

Subsequently, a walk transformation function was co
structed for thei th choice as

W~ i !5(
j51

i

s~ j !.

This transformation is analogous to the path observed fo
one-dimensional random walker@27#. It is well established
that a random walker generates a self-similar trajectory
diffuses liketh, h51

2, corresponding to a fractal dimension o
22h51.5. Moreover, anamolous diffusion has been defin
via exponentsh.1

2 or h, 1
2 describing anomolously fast o

slow diffusion, respectively. In the case of the binary cho
task, anamolous fast diffusion corresponds to sequence
similar choices, i.e., simple repetitions of one or the oth
choice alternative. In contrast, anomolous slow diffusion
characterized by alternating choice sequences, i.e., antic
lated adjacent steps. Finally, the autocorrelation function
described by ad function for h51

2, but retains residual cor
relations forh" 1

2. Anomolous diffusion is thus characterize
by the interdependences on all levels of resolution.

Here the distanceL between positions ofW that arek
steps apart is assumed to scale askh. Extending the method
described in@16# in order to assess the fluctuations ofh for
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3252 55MARTIN P. PAULUS
different subsequences of theW starting at thei th choice, a
local spatial scaling exponentd522h was defined by

L~ i ,k!'k22d~ i !.

The exponentd( i ) quantifies the geometric properties of
walk segment. Specifically, a high exponent indicates t
the distance does not increase significantly with an incre
ing number of steps, corresponding to anomolously slow
fusion or an anticorrelated behavioral sequence. On the
trary, a low exponent signifies a large increase of dista
upon increasing the number of consecutive steps or fast
fusion via a correlated behavioral sequence.

To quantify the contribution of the occurrence of a pa
ticular local scaling exponentd( i ) to the ensemble averag
of all subsequences for the walk transformation, it has b
proposed that the probability densityr(d) of finding a seg-
ment on scalek that exhibits a particular local spatial scalin
exponentd can be described via

r~d!'k2@d2 f ~d!#.

That is, the frequency of occurrence depends on the s
and a function that explicitly depends only on the local s
tial scaling exponent, i.e.,f (d). In the special case wher
f (d)5d, we obtain the probability density to be 1 and no
vanishing. Thisd value characterizes the overall geomet
scaling property of the entire walk transformation. This sc
ing function has been called aspectrum of singularities@28#
or a spectrum of local scaling exponents@21#.

Analogous to the fluctuation spectrum of local dynami
entropies, the spectrum of local spatial scaling exponents
be estimated using a canonical approach. Specifically, an
determined multiplierq, is introduced and generates a ma
mum likelihood estimation of the probability density for th
different levels or resolution. The mass exponentt(q), de-
fined via

k2t~q!' (
i50

N2k

L~ i ,k!q21,

consists of aq-weighted summation over all local lengths
path segments. Rearranging the summation to sum ove
different local distancesL with sampling widthdL, i.e.,

k2t~q!'(
L

r„L~ i ,k!…dLL~ i ,k!q21,

using the scaling assumptionL( i ,k), and eliminating prefac-
tors yields

k2t~q!'(
L

r„L~ i ,k!…dLk2~q21!d~n!.

Introducing thef (d) function, one may replace the summ
tion over the different lengths by a summation over the va
ous local scaling exponents and their densities

k2t~q!'(
d

k2@d2 f ~d!#k2~q21!d.
t
s-
f-
n-
e
if-

-

n

le
-

-

l-

l
an
n-

all

i-

This summation will give appreciable contributions for va
ousq values only if the difference betweenqd and f (d) is
minimal. Thus the mass exponentt(q) can be used to obtain
the f (d) value using

f ~d!'qd2t~q!.

For the explicit calculation off (d), theq-dependent spatia
exponentd(q) that minimizes the difference above is give
by

d~q!5
] ln@t~q!#

]q
5

1

ln~k!

(
i50

N

L~ i ,k!q21 ln@L~ i ,k!#

(
i50

N

L~ i ,k!q21

.

The evaluation of these summations for variousq values
yields q-dependent averages of distances that correspon
different local scaling exponents. Specifically, forq→` only
long distances will contribute significantly to this summ
tion, thus evaluating diffusing, correlated sequences co
sponding to low local scaling exponents. In contrast,
q→2`, only short distances will contribute to the evalu
tion, yielding slowly diffusing, anticorrelated sequences c
responding to high local scaling exponents. Using lea
squares fits to obtain the scale-independent functions,
method also provides error estimates of all quantities.

For the experiment, human subjects sat in front of a co
puter equipped with a mouse. Instructions were shown on
computer screen and additional questions regarding the
periment were answered by the experimenter. The comp
screen displayed a house in the center flanked on either
with a sidewalk and a ditch. Across the ditches were t
roads. The following scenario was described. In the ho
are several people waiting to catch a ride with a car tha
driving on the road on the left- or the right-hand side. On
two people can wait at a time, one on each side, but nei
can cross the ditch between the sidewalk and the road.
subject’s task was to push the left or the right button in or
to build a temporary bridge for one of the people, who m
then cross the ditch to reach the car. The experimenter i
cated that the car could arrive on either side without a p
ticular preference or order in appearance. A trial was defi
by the response of the subject to the situation descri
above. The paradigm consisted of 500 presentations of
situation, i.e., 500 trials. Each trial was initiated without d
lay by the button push of the previous response. Initially, t
schematic figures appeared on the screen until the sub
responds. Thereafter, the car was shown briefly on the c
puter screen for 250 msec on the far right- or left-hand s
as determined by a random number generator. At the en
the paradigm, the computer screen was cleared and the
ject was informed that the procedure had been complete

Twenty-two subjects were recruited from an undergra
ate course at San Diego State University screened for
chological abnormalities and were asked to participate i
larger research project of which the choice task experim
was a small component. The mean age of the subjects
27.462.8 yr and included both males and females.

The autocorrelation function was calculated for each s
ject for 0<k<32 and the autocorrelation functions were a
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FIG. 1. ~a! Average correlation functionC(k) and ~b! average mutual information functionI (k) obtained by averaging the individua
functions across all subjects. These functions are fitted logarithmically~for parameters see Table I! and are shown in~b! and ~d!, respec-
tively. The line in~b! and ~d! reflects the fitted function forC(k) and l (k), respectively.
or

fo
n

bit

r-

ub-
eraged across the 22 subjects to obtain the group autoc
lation function @Fig. 1~a!#. The correlation between
successive choices decays rapidly and approaches zero
lag of 5. The doubly logarithmic fit of the autocorrelatio
function @Fig. 1~b!# indicates a power-law decayC(k)'t2g,
re-

r a

with g52.76. However, the regression coefficients exhi
large standard errors, indicating a poor fit~Table I!.

Similar to the autocorrelation function, the mutual info
mation function was computed for each subject for 0<k,32
and the individual functions were averaged across all s
TABLE I. Parameters for the least-squares fit of the formAkB for the autocorrelation functionC(k) and the mutual information function
I (k). Two distinct regimes forI (k) were observed~k,12 andk>12! and fitted separately. Listed are the parameters~constant and
exponent!, the standard error~SE!, theT statistic, the tail probability~p value!, and the explained variancer 2.

Logarithmic fit for autocorrelation and mutual information
Parameters A SE T statistic p value B SE T statistic p value r 2

C(k) 21.61 2.06 20.78 0.47 22.76 1.14 22.41 0.073 0.59
I (k), k,12 24.27 0.21 220.04 0.00 21.35 0.08 215.89 0.00 0.97
I (k), k>12 28.04 0.82 29.71 0.00 20.05 0.18 20.27 0.79 0.00



ith
n

w
-
or
th
ea
in

si

ts
ra
y
l
at
o

th
s
o

ng
n
fro

e

de
o
se
ith

-
wi
e
do
ly

in

on
pe

ea
e

ts

t
a

m
c-

d
ly

ed

ze,

g
d
-
t for

3254 55MARTIN P. PAULUS
jects to yield the group mutual information function@Fig.
1~c!#. The values of the group function are compared w
the systematic overestimation according to Herzel a
Grosse @13#, given by 1/@25002k ln~2!#, graphed in Fig.
1~d!. The mutual information function exhibits a power-la
decayI (k)'t2g, with g51.348. In this case, the fitted pa
rameters are highly significant with small standard err
~Table I!. Thus, compared to the autocorrelation function,
mutual information provides a more statistically robust m
sure of the information decay. Interestingly, the mutual
formation function exhibits a different behavior fork>12.
For these delays, the mutual information does not decay
nificantly as indicated by the fitting function~Table I!. In
addition, the group mutual information function exhibi
consistently higher values than those obtained from the
domized data sets~light gray points! and those predicted b
the systematic overestimation~line!. In summary, the mutua
information function for the subjects indicates two separ
regimes: first, a significant decay of mutual information f
consecutive choices with small lags~k,12!, and second, a
small but significant interdependence between choices
are separated by a larger lag~k.12!. Therefore, even choice
that are separated by many choices in between are not c
pletely statistically independent.

The group fluctuation spectrum of local spatial scali
exponentsf̄ (d) was obtained by averaging the fluctuatio
spectra of each subject. The scales considered varied
k51 to 100 averaged over an ensemble size ofn5150 con-
secutive choices. Each function was evaluated at a rang
predeterminedq values and averages for bothd and f (d)
were obtained. Figure 2~a! showsf̄ (d) for 22 subjects~black
points! and for the randomized data sets~gray points!. The
units on both axes correspond to ln@~length!#/ln@~scale!#. The
t-score difference function is shown in Fig. 2~b!. First, the
average spatial scaling exponentd5d~1! does not differ sig-
nificantly between subjects~d̄51.474060.0262! and the ran-
domized data sets~d̄51.469060.0311!. Consequently, the
average scaling behavior of choice sequences does not
ate from a random walk within the investigated region
scaling. Second, subjects exhibit a significantly increa
contribution of highly anticorrelated choice sequence w
high local spatial scaling exponentsd.1.66 as indicated by
f t(d),22.0. Third, there is a slight and marginally signifi
cant increase of highly correlated choice sequences
d,1.3 with f t(d),22.0. To summarize, subjects’ choic
sequences are characterized, on the average, by a ran
walk pattern, but exhibit significant deviations of both high
correlated and anticorrelated choice subsequences.

Similar to the f̄ (d) function, the group fluctuation
spectrum of local dynamical entropiesS̄(h) was obtained by
q-dependent averaging of the fluctuation spectra for the
dividual subjects. Figure 3~a! shows theS̄(h) for all subjects
~black points! and for all randomized data sets~gray points!.
The units on both axes correspond to~bits!/~step!. To statis-
tically evaluate the difference between these two functi
the t-score difference between the averaged fluctuation s
tra is shown in Fig. 3~b!. Similar to theS(h) functions
shown for the individual subject, the group functions rev
three distinct characteristics. First, the average or metric
tropy for the subjects~h̄met50.780060.0178! is significantly
lower than hmet for the randomized data se
d

s
e
-
-

g-

n-

e
r

at

m-

m

of

vi-
f
d

th

m-

-

,
c-

l
n-

~h̄met50.861060.0061!. Second, the randomized data se
is characterized by a lower topological entropy with
larger contribution of the topological entropy
@„htop,S̄(h)…51.021060.0029, 0.947060.0018# as indicated
by the higher maximum of the group fluctuation spectru
compared to the subject’s maximum of the fluctuation spe
trum. @„htop,S̄(h)…51.067060.0147, 0.930060.0031#.
Third, S̄(h) for the subjects exhibits a significantly increase
contribution of highly predictable subsequences and high
unpredictable subsequences as indicated by thet-score dif-
ference function. This function shows that the randomiz
data sets contain significantly fewer low~h,0.75! and high
~h.1.2! dynamical entropy subsequences. To summari

FIG. 2. ~a! Average fluctuation spectrum of local spatial scalin
exponentsf (d) and ~b! t-score differences between original an
randomized dataf t(d). The gray area indicates insignificant differ
ences between the original data and the randomized data se
different local spatial scaling exponents.
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55 3255LONG-RANGE INTERACTIONS IN SEQUENCES OF . . .
the group fluctuation spectrum of local dynamical entropi
reveals a greater nonuniformity for the subjects relative
the randomized data sets.

There are three main results of this investigation. Fir
average measures of interdependence on a short scale~1,k
,10! and a midrange scale~5,k,22! indicate that subse-
quent choices in a simple binary choice task are not rando
Second, the subject’s choice sequences are characterize
an increased variability in interdependence compared to
randomized data sets on all scales. Third, there are two sc
~k,12 andk.12! with different characteristics of average
information decay.

Conceptually, human choice behavior is located at t
interface between external or internal constraints due to

FIG. 3. ~a! Average fluctuation spectrum of local dynamica
entropiesS(h) and ~b! t-score differences between original an
randomized dataSt(h). The gray area indicates insignificant differ
ences between the original data and the randomized data set
different local dynamical entropies.
s
o

t,

.
by

he
les

e
n-

vironmental or intrapsychic demands and observable act
of human beings. Various aspects of choice behavior h
been extensively discussed in the psychological literat
@29–34#. The results of these investigations suggest that
cision making in the presence of uncertainty involves co
plex central processes that are sensitively influenced b
variety of experimental factors.

Here the mutual information function indicates that t
interdependence between choices decays significantly w
the adjacent ten choices. This would suggest that the ave
interdependence is best captured in statistical-mechan
models that incorporate explicitly these scales. However,
interdependence between choices that are separated by
than ten choices does not vanish. Instead, there is a sig
cant long-range dependence between choices. The det
assessment of the long-range behavior using the fluctua
spectrum of local spatial scaling exponents indicates that
subjects generate significantly more anticorrelated or al
nating choice sequences than would be expected by cha
This finding had been anecdotally described previously
short sequences@35#. This investigation extends these find
ings for long sequences. Put simply, human subjects exh
a ‘‘balance’’ between choice alternatives that extend acr
long ranges of choice sequences.

However, the subjects also generated an increased co
bution of correlated or simple repetitive sequences wh
compared to the randomized data set. These findings
been described previously within the context of induction
sequence repetition@29#. Therefore, it appears that huma
choice sequences result from the balance of two compe
principles, i.e., balancing choice alternatives and genera
simple repetitive choice sequences. The competition betw
these two principles results in an increased variability
choice subsequences. This variability also extends to the
namic description of the choice sequences. Specifically, b
highly predictable and highly unpredictable choice sub
quences contribute significantly more frequently to the av
age interdependence between choices than expected
chance. Within the entropic realm, there appears to be a c
petition between two dynamic principles: first, to genera
novel, unpredictable behavioral sequences, and secon
repetitively use a familiar set of choice sequences. Thus
increased range of local dynamical entropies may result fr
the competition between uncertainty or novelty and famili
ity or establishment of a characteristic set of rules genera
the choice sequences.

In summary, the application of the fluctuation spectru
analysis to a simple behavioral paradigm is able to extra
few guiding principles for the generation of choice s
quences. These principles can be used in a statist
mechanical model to determine explicitly the influence
these principles on choice behaviors in analogy to the de
mination of order parameters in coordinated hand mo
ments @22,23#. Moreover, the mutual information functio
can be used to determine the scale of a model for the
tained data sets based on the average interdependence.
findings further support the notion that complex behav
ranging from a molecular biological level@13,14,16# to a
socioeconomic level@36# is based on long-range interaction
between individual elements.
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